A delayed choice quantum eraser explained by the transactional interpretation of quantum mechanics
نویسنده
چکیده
This paper explains the delayed choice quantum eraser of Kim et al. [1] in terms of the transactional interpretation of quantum mechanics by John Cramer [2, 3]. It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous “collapse” of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the Transactional Interpretation (TI) over the usual Copenhagen Interpretation (CI) for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably. PACS codes: 03.65.Ta, 03.65.Ud, 42.50.Dv
منابع مشابه
On the Arrow of Time
The interface between classical physics and quantum physics is explained from the point of view of quantum information theory (Feynman Processes). The interpretation depends on a hefty sacrifice: the classical determinism or the arrow of time. The wave-particle duality steams from the qubit model, as the root of creation and annihilation of possibilities. A few key experiments are briefly revie...
متن کاملA Delayed Choice Quantum Eraser
Complementarity, perhaps the most basic principle of quantum mechanics, distinguishes the world of quantum phenomena from the realm of classical physics. Quantum mechanically, one can never expect to measure both precise position and momentum of a quantum at the same time. It is prohibited. We say that the quantum observables “position” and “momentum” are “complementary” because the precise kno...
متن کاملTime and the quantum: erasing the past and impacting the future.
The quantum eraser effect of Scully and Drühl dramatically underscores the difference between our classical conceptions of time and how quantum processes can unfold in time. Such eyebrow-raising features of time in quantum mechanics have been labeled "the fallacy of delayed choice and quantum eraser" on the one hand and described "as one of the most intriguing effects in quantum mechanics" on t...
متن کاملRandom Delayed-Choice Quantum Eraser via Two-Photon Imaging
We report on a delayed-choice quantum eraser experiment based on a two-photon imaging scheme using entangled photon pairs. After the detection of a photon which passed through a double-slit, a random delayed choice is made to erase or not erase the which-path information by the measurement of its distant entangled twin; the particle-like and wave-like behavior of the photon are then recorded si...
متن کاملAn Operational Analysis of Quantum Eraser and Delayed Choice
In the present paper we expand upon ideas published some time ago in connection with which path detectors based on the micromaser . Frequently questions arise concerning the time ordering of detection and eraser events. We here show , by a detailed and careful analysis of a quantum eraser experimental setup, that the experimenter can choose to ascertain particle-like which path information or w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015